High-powered rubber is a lot different than low-powered rubber, for example the effectiveness of rudder goes up with the square of airspeed. So flying a simple ROG or Dart with rudder trim is not nearly the same as a Gollywock wound to 45 in/oz that achieves 500 feet in a steep 45 second climb. Generally I avoid rudder trim on all my fast rubber models for this reason. The power burst and a gust of wind can become very dangerous. Also, too much side thrust can crash a fast rubber model.

Most outdoor high-power rubber models with folding props are trimmed right/left because they are safer that way. Typical thrust settings are 1-2 degrees right and 2-3 degrees down.

Most low wing scale models fly wide left under high torque then cruise to the right after the torque burns off due to them carrying about 1 deg right thrust. A few guys are successful at trimming low wings right/right but they are in the minority.

High wing, biplanes and mid/shoulder scale models can go right or left in the climb, but you can usually get a better climb by going right.

Non-scale power (glow and electric) models are very different. They have 2:1 or better thrust to weight ratios which equate to SPEED and ACCELERATION far beyond even very fast rubber models. This means CG location, decalage and rudder trim are FAR more critical. With these models and their small props torque is negligible, but prop blast/slipstream is not. For this reason pylon models always climb right and high thrust models always climb left. Glide can be either direction but R is safer on pylon models.

HLG and catapult gliders are very similar to fast power models. CG, decalage and rudder trim are critical when the things leave your hand at 90 mph. Modem HLGs go left/right for right handed launchers using stab skew and right rudder. CLGs go right/left when launched right handed in a hard right bank.